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Abstract
It is shown that the dispersionless KP hierarchy possesses an infinite collection
of symmetries depending on arbitrary functions of the time variables. The
twistor formulation of a factorization problem determines the family of
symmetries and serves for the characterization of solutions of the hierarchy.
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1. Introduction

The dispersionless limit of the Kadomtsev–Petviashvili hierarchy, the dKP hierarchy, admits
a formulation as a system of Lax equations in a Lie algebra of functions, defined on a two-
dimensional canonical manifold with commutator given by the Poisson bracket. For the origin
and relevance of this dKP hierarchy see [1–14]. As for most systems of Lax equations, we can
derive them from a factorization problem in the group corresponding to the given Lie algebra
[12]. In the present situation such a formulation proves particularly useful when computing
solutions of the dKP equation; the reason for this, in this case, is that the adjoint representation
of the Lie group in the Lie algebra furnishes a tractable version of the factorization problem
that characterizes the solutions to the dKP hierarchy. These are the twistor equations [11],
the solutions of which can be conveniently described by means of the generating function
formalism for the study of canonical transformations [11, 12].

The construction of solutions for the dKP hierarchy, as well as for other dispersionless
equations, has been pursued along a number of different lines. To cite some of them, we
recall the use of reductions of hydrodynamic type [13, 14], the hodograph solutions related
to reductions given by systems of first-order partial differential equations [19, 20] and the
dispersionless formulations of the inverse scattering [15, 16] and ∂̄ method [17, 18]. We
should also mention the connection of the dKP equation with the description of certain
Einstein–Weyl spaces [21, 22], as well as the twistor equations associated with factorization
problems in a group of canonical transformations we alluded to before.
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In [12] we were able to construct solutions of the hierarchy containing arbitrary
functions of the time variables. Such a construction was performed in a class of canonical
transformations, defined in terms of certain generating functions as we said before. However,
the functional dependence on the time variables, as observed in some concrete examples,
can be compensated by an appropriate symmetry transformation depending on the given
arbitrary functions. Such symmetries of the dKP equation, containing the first two times,
were found in [21] associated with the Einstein–Weyl metric and characterized later in [12] as
canonical transformations. It is the purpose of the present work to clarify the presence of such
transformations in the whole dKP hierarchy, mainly because they represent a natural gauge
when writing its solutions.

In this paper we shall obtain explicit formulae for the extension to the complete dKP
hierarchy of these symmetry transformations. The construction of solutions given in [12] can
thus be reduced to the study of simpler canonical transformations once we neglect the part of
the canonical transformation responsible for the symmetry. We also give a simple test for the
existence of solutions to the twistor equations and integral formulae for them.

The content and organization of this paper are as follows. In section 2 we examine the
relevant facts about the dKP hierarchy that will be used in the rest of the work. We characterize,
proposition 2.1, a class of twistor equations whose solutions admit a description by means
of a finite number of conditions. Section 3 contains the construction of the solution, to the
factorization problem in the group, for a family of canonical transformations with functional
dependence in the time variables. These solutions reflect the ambiguity in writing solutions
of the dKP hierarchy in their functional dependence on the time variables. This is the result
used, in section 4, for the construction of the functional symmetries of the dKP hierarchy with
the general formula for the transformation law of the solution to the dKP equation. Finally,
in section 5 we describe the canonical transformations of [12] as a composition of simpler
transformations and give formulae for the corresponding solutions.

2. The dKP hierarchy

The holomorphic cotangent bundle E = T ∗M → M for the Riemann sphere M = S2 is
a two-dimensional complex manifold. The standard covering of M = U0

⋃
U1 by open

neighbours of zero and infinity gives coordinates (p, x) for points of E in terms of the
differential dp of the coordinate p of M fixing the differential form xdp in T ∗

p M . Sections
of the exterior bundle

∧
(E) are represented by the space of holomorphic differential forms

�(E) = �0(E) ⊕ �1(E) ⊕ �2(E) where �0(E) = OE is identified with the holomorphic
sheaf of the manifold E.

The chosen coordinates for E define a volume form in the determinant bundle
∧2

(E)

given by minus the differential of the canonical 1-form, α(E) = −d(x dp) = dp ∧ dx for
(p, x) ∈ U0 × C. Let f, g be two functions in OE ; the relation

df ∧ dg = {f, g}α(E)

defines the commutator {f, g}. In coordinates

{f, g} = ∂f

∂p

∂g

∂x
− ∂f

∂x

∂g

∂p
.

Let D0 and D1 be two open discs in M centred at zero and infinity respectively, with
non-empty intersection U for which we define the Lie algebra

g = OE(U × C)



Functional symmetries and solutions of the dKP hierarchy 5403

with the previous commutator. The Lie algebra g is the sum of two subalgebras g = g+ ⊕ g−,
where g+ = OE(D0 × C) and g− = OE(D1 × C) for functions vanishing at p = ∞. This is
the situation described by the space of convergent Laurent series, in an annulus of the complex
plane of the variable p, with coefficients depending on the variable x for the Lie algebra g.
The subalgebras g+ and g− represent the positive and strictly negative parts of the series in
each case.

Let L be an element in g that depends on new variables t2, t3, . . . and has the prescribed
form [11, 12],

L(p, x, t2, t3, . . .) = p +
∑
j�1

uj (x, t2, t3, . . .)p
−j .

As usual, define the functions Pn, n = 2, 3, . . . , as the projections on g+ of the positive powers
of L,Pn = Ln |+. The Lax–Sato hierarchy is given by the infinite set of equations

∂L

∂tn
= {Pn,L}

for n = 2, 3, . . . , which in particular imply the dKP equation for the function u = 2u1,(
ut − 3

2uux

)
x

= 3
4uyy

where u1 is the coefficient of p−1 in L and we have set t2 = y, t3 = t . As functions of the
time variables, t = (t2, t3, . . .), we collect together the previous equations for L to write

dL = {ω+, L}
in terms of the g+-valued differential 1-form ω+ = ∑

n�2 Pn dtn with dL = ∑
dtn∂L/∂tn.

The notation ω+ suggests we define ω = ∑
n�2 Ln dtn, the differential of which is given by

dω = ∑
n�2{ω+, L

n} ∧ dtn, or equivalently

dω = {ω+, ω}.
Letting ω = ω+ − ω− represent the decomposition of the g-valued differential form ω into
its positive and negative projections and taking into account the fact that {ω,ω} = 0, because
{Ln,Lm} = 0, we obtain the zero-curvature equations

dω± = 1
2 {ω±, ω±} (2.1)

as an equivalent description of the dKP hierarchy. This form of writing the system allows
one for an integration procedure in the following terms. For a given element H(p, x) in g,
consider the associated Hamiltonian flow defined by the vector field (−∂H/∂x, ∂H/∂p),

dp

ds
= −∂H

∂x

dx

ds
= ∂H

∂p

which assigns to the initial point (p, x) at s = 0, the point (p(s), x(s)) given by the Taylor
series in s

p(s) = Ad esH p x(s) = Ad esH x.

Here we define the adjoint action according to

Ad esH f (p, x) = eadsH f (p, x)

given in terms of the adjoint operator in the Lie algebra (adf )g = {f, g}. The exponential
map, for the group of canonical transformations associated with the Lie algebra g, assigns to
H the group element exp H that corresponds to the value of the flow defined by H at s = 1 for
a smooth Hamiltonian H . The relevance of that group in the dKP hierarchy stems from the
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fact that the function L(p, x) can be described by the action of the flow defined by a generic
Hamiltonian H−(p, x) = ∑

j�1 Hj(x)p−j in g−; we have

L(p, x) = Ad eH−(p,x)p (2.2)

where the dependence on the time variables of both L and H− is not explicitly displayed. The
integration of the Lax–Sato equations for the dKP hierarchy starts with the observation that for
such L(p, x), the differential in the time variables takes the form dL = {ω−, L}. The 1-form
ω− = dψ−ψ−1

− is defined by the right differential of the group element ψ− = exp H−,

dψ−ψ−1
− =

∑
k�0

(adH−)k

(k + 1)!
dH−.

The differential form ω becomes in that case

ω =
∑
n�2

Ln dtn = Adψ− dt (p)

with dt (p) = ∑
n�2 pn dtn. The decomposition into its positive and negative projections leads

to the condition that the form

ω+ = dψ−ψ−1
− + Adψ− dt (p)

must be positive and of zero curvature in order to the function L(p, x) be a solution of the dKP
hierarchy. Accordingly, we write the solution to the zero-curvature equation as ω+ = dψ+ψ

−1
+ .

In that case, ψ+ = exp H+ where H+ takes values in g+. Then we see that the relation in the
Lie algebra may be formulated as an equation in the group,

ψ− et (p)k = ψ+ (2.3)

that follows from the fact that the two elements in the group from which one gets ω+ can differ
at most in a constant element k, independent of the time variables. Condition (2.3) admits a
reformulation, as a factorization problem in the group for the flow et (p)k associated with an
arbitrary transformation k, given by the equation

et (p)k = ψ−1
− ψ+. (2.4)

The relevance of this relation is that it allows us to describe the transformations ψ− for which
the function L(p, x) in (2.2) is a solution for the dKP hierarchy.

Besides the function L(p, x), the function

M(p, x) = Ad eH−(p,x)Ad et (p)x (2.5)

proves to be a basic ingredient in the dKP theory [11]. First, observe that M =
Ad eH−(x + ∂t (p)/∂p); the pair L,M is then a canonical pair obtained from (p, x + t ′(p))

through the action of exp H−. That is to say that they are the solution of

dp

ds
= −∂H−

∂x

dx

ds
= ∂H−

∂p

issued from (p(0) = p, x(0) = x + t ′(p)) at s = 1 (L = p(1),M = x(1)). Therefore, for
the evolution defined by H− we have the relation H−(p, x + t ′(p)) = H−(L,M) or

Ad et (p)H−(p, x) = H−(L,M)

for the first integral H−, which shows another aspect of the connection between the pair (L,M)

and the Hamiltonian H−. An alternative description of the canonical variables (L,M) comes
from the generating function formalism that defines the new pair by the condition

M dL + p dx = d�(L, x)
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which amounts to the implicit system for (L,M)

p = ∂�

∂x
(L, x) M = ∂�

∂L
(L, x). (2.6)

In these formulae the generating function �(L, x) is to be understood as a given function of
the form

�(L, x) = t (L) + xL + φ(L, x)

as indicated by the previous expressions for L and M with

φ(L, x) =
∑
j�1

φj (x)L−j .

When combined with the adjoint representation of the factorization problem (2.4) one obtains
the twistor equations for the solutions of the dKP hierarchy in the following terms. Let
P(p, x) = Ad kp and X(p, x) = Ad kx be the two canonical variables defined by the constant
element k. The definitions (2.2) and (2.5) of L and M respectively lead to the equivalent form
of the factorization problem (2.4):

P(L,M) = Adψ+p X(L,M) = Adψ+x.

From these equations we deduce that the negative parts of P(L,M) and X(L,M), when
expressed in powers of the variable p, must vanish

P(L,M)|− = 0 X(L,M)|− = 0. (2.7)

The generating function �(L, x) reduces the problem to a pair of equations for the partial
derivatives of such function

P(L,�L) = F+(�x, x) X(L,�L) = G+(�x, x) (2.8)

where F+(p, x) and G+(p, x) are the positive parts of P(L,M) and X(L,M) when both L
and M are expressed in terms of p and x through (2.6). We define F−(p, x) and G−(p, x) with
the same meaning for the negative parts. The existence of a solution, provided we can solve
these equations for the partial derivatives of �, is guaranteed by the compatibility conditions

{P,X}�L,x = {F+,G+}�x,L

one gets by taking partial derivatives. But, by construction, P and X are a pair of canonical
variables with commutator {P,X} = 1. For a solution �L,�x the same is true for F+ = P

and G+ = X from which we have {F+,G+} = 1 and hence the mixed partial derivatives of
� coincide. A solution �(L, x) serves as a generating function for a solution L(p, x) of the
dKP hierarchy provided it depends on L and x in the form we assumed previously. A useful
application of this compatibility relation appears in connection with the reduction of system
(2.7) to a system with a finite number of equations.

Proposition 2.1. Assume the first of the equations in system (2.7) can be solved so that P = F+

for some polynomial F+(p, x) of degree m in the variable p. Then, the vanishing of the first
m − 1 coefficients in the expansion of G− in powers of p implies the condition {F+,G+} = 1.

Proof 2.1. Because {P,X} = 1 and P = F+ we will have {F+,G+}−1 = {F+,G−} according
to the decomposition of G into positive and negative parts. In this last relation the member on
the left-hand side is positive, therefore so must be the bracket on the right-hand side whose
positive part is equal to zero since the series for G− begins with a term of the form b(x)p−m

and the result follows. �
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3. Special solutions

Among the canonical transformations studied in [12], which furnish examples of variables
(P,X) for the twistor equations, we shall consider the particular case defined by a generating
function of the form

J (P, ρ) = Jr+1(ρ)P r+1 (3.1)

where for each fixed integer r � 2, Jr+1(ρ) represents an arbitrary analytical function at ρ = 0.
The value of the integer r also fixes the number of time variables entering in the function

t (p) = t2p
2 + · · · + tr+1p

r+1.

The variables (P,X) are defined through the intermediate canonical pair (h, ρ),

h = pr+1 ρ = x

(r + 1)pr

by means of the composition,

(p, x) → (h, ρ) → (P,X)

when we compute the differential of the generating function (3.1)

dJ = X dP + h dρ.

In that case the formulae X = ∂J/∂P, h = ∂J/∂ρ give the equations

pr+1 = J ′
r+1(ρ)P r+1 X = (r + 1)Jr+1(ρ)P r

which admit a solution

P = 1

(J ′
r+1)

1/(r+1)
p X = (r + 1)Jr+1

(J ′
r+1)

r/(r+1)
pr . (3.2)

To go over the associated equations (2.8), we construct the functions

F(L, x) = 1

(J ′
r+1)

1/(r+1)
L G(L, x) = (r + 1)Jr+1

(J ′
r+1)

r/(r+1)
Lr

as well as a function ρ(L, x) defined by

ρ(L, x) = 1

(r + 1)Lr
(t ′(L) + x + φL).

The positive part for F(L, x) is then

F+(p, x) = p

(J ′
r+1(tr+1))1/(r+1)

− rtrJ
′′
r+1(tr+1)

(r + 1)2(J ′
r+1(tr+1))

r+2
r+1

(3.3)

which we abbreviate as F+(p, x) = f0(tr+1)p + f1(tr+1, tr ). Analogously, we encounter for
G+(p, x) an expression of the following type:

G+(p, x) = g0(tr+1)Pr + g1(tr+1, tr )Pr−1 + · · · + gr(tr+1, . . . , t2, x) (3.4)

where, as we did previously, we denote Pk = Lk|+. The first of the equations (2.8),
F(L, x) = F+(L, x), is enough in this case to determine the solution. In fact we have

L

(J ′
r+1(ρ))1/(r+1)

= f0(tr+1)p + f1(tr+1, tr )

with ρ = ρ(L, x) as before. Since p = L + φx , equation (2.6), we come to the relation

1

f0

(
L

(J ′
r+1(ρ))1/(r+1)

− f1

)
= L + φx
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which determines φ1,x, . . . , φr,x from the series expansion at L = ∞. From p = L + φx

and successive powers p2 = L2 + 2Lφx + φ2
x, . . . we obtain the polynomials P2 = L2|+, . . . ,

Pr+1 = Lr+1|+ needed for the construction of the solution to the dKP hierarchy, expressed by
the vanishing of the curvature for the connection

ω+ = P2 dt2 + · · · + Pr+1 dtr+1. (3.5)

In the simplest cases, r = 2, 3, the foregoing expressions yield, denoting z = Jr+1(tr+1), t3 =
t, t2 = y, the formula

ω+ =
[
p2 +

6xz′′ + 4y2z(3)

27z′ − 16y2(z′′)2

81(z′)2

]
dy +

[
p3 + p

[
3xz′′ + 2y2z(3)

9z′ − 8y2(z′′)2

27(z′)2

]

+
18xyz(3) + 4y3z(4)

81z′ − 24xy(z′′)2 + 16(y)3z′′z(3)

81(z′)2
+

112y3(z′′)3

729(z′)3

]
dt

for r = 2. If, instead, we take r = 3 we shall obtain the solution

ω+ = P2 dt2 + P3 dt3 + P4 dt4

with

P2 = p2 +
yz′′

4z′ +
9t3[−5(z′′)2 + 4z′z(3)]

256(z′)2
.

We also deduce the formula

P3 = p3 +
p

8192(z′)3
[3072y(z′)2z′′ − 2160t2z′(z′′)2 + 1728t2(z′)2z(3)]

+
1

8192(z′)3
[1536x(z′)2z′′ − 2880ytz′(z′′)2 + 1215t3(z′′)3

+ 2304yt (z′)2z(3) − 1620t3z′z′′z(3) + 432t3(z′)2z(4)]

and finally we get the following expression for P4:

P4 = p4 +
1

65536(z′)4
{512p2[64y(z′)3z′′ − 45t2(z′)2(z′′)2 + 36t2(z′)3z3]

+ 32p[512x(z′)3z′′ − 960yt (z′)2(z′′)2 + 405t3z′(z′′)3 + 768yt (z′)3z(3)

− 540t3(z′)2z′′z(3) + 144t3(z′)3z(4)] − 1024[8y2 + 15xt](z′)2(z′′)2

+ 4096[2y2 + 3xt](z′)3z(3) + 4608yt2[5z′(z′′)3 − 7(z′)2z′′z(3)

+ 2(z′)3z(4)] + 27t4[−255(z′′)4 + 480z′(z′′)2z(3) − 96(z′)2(z(3))2

− 160(z′)2z′′z(4) + 32(z′)3z(5)]}.
Let now ξ+ be the group element defined by the product

ξ+ = eγpx eβx eA (3.6)

where γ = γ (t) and β = β(t) depend on the first r time variables. Here it is understood that
t = (t2, . . . , tr+1), while A = A(p, t) is a positive function on p independent of the coordinate
x. The transformation given by formulae (3.2), represented in the group by a constant element
k1, gives rise to a factorization problem, equation (2.4),

et (p)k1 = ξ−1
− ξ+

whose solution for the positive part ξ+ is precisely an element of the form (3.6) upon an
appropriate choice of the functions contained in it. This will be the case provided F+(p, x)

and G+(p, x), in formulae (3.3) and (3.4) respectively, are related to ξ+ in accordance with
equations (2.8),

Adξ+p = F+(p, x) Adξ+x = G+(p, x). (3.7)
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The action of ξ+ on the canonical coordinates reduces to the composition of three flows with
Hamiltonians H1 = A(p, t),H2 = x and H3 = px. The solution to Hamilton’s equations
defines, as in section 2, the adjoint action of the element corresponding to the Hamiltonian in
each case. Thus, for H1 = A(p, t) the solution to Hamilton’s equations ṗ = 0, ẋ = A′(p, t),
with A′(p, t) = ∂A(p, t)/∂p, is given by the formulae

p(s) = p x(s) = x + sA′(p, t)

which taken at s = 1 determine the adjoint action of eA according to the formulae

Ad eAp = p Ad eAx = x + A′(p, t).

For H2 = x, the equations ṗ = −1, ẋ = 0 have the solution p(s) = p − s, x(s) = x, which
at s = β define

Ad eβxp = p − β Ad eβxx = x.

When we consider H3 = px, from ṗ = −p, ẋ = x we deduce the solution

p(s) = p e−s x(s) = x es

which for s = γ are

Ad eγpxp = p e−γ Ad eγpxx = x eγ .

Taken together these formulae we obtain the composition

Adξ+p = Ad eγpxAd eβxAd eAp

from which we get

Adξ+p = Ad eγpx(p − β) = p e−γ − β

as follows from our previous computations. Analogously, for the action on the coordinate x
we have

Adξ+x = Ad eγpxAd eβxAd eAx

which gives

Adξ+x = Ad eγpxAd eβx(x + A′(p, t)) = Ad eγpx(x + A′(p − β, t))

from which we conclude that

Adξ+x = x eγ + A′(p e−γ − β, t).

The first of conditions (3.7), due to equation (3.3) and the formulae for the adjoint action
of the element ξ+, becomes

e−γ p − β = p

(J ′
r+1(tr+1))1/(r+1)

− rtrJ
′′
r+1(tr+1)

(r + 1)2(J ′
r+1(tr+1))

r+2
r+1

from which we obtain the functions γ and β according to the following formulae:

e−γ = 1

(J ′
r+1(tr+1))1/(r+1)

β = rtrJ
′′
r+1(tr+1)

(r + 1)2(J ′
r+1(tr+1))

r+2
r+1

.

In addition, from (3.7) and the action of ξ+ on x we have

x eγ + A′(e−γ p − β, t) = G+(p, x).

Note that since {F+,G+} = 1, the expression found for F+ implies that

G+(p, x) − x eγ
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does not depend on the coordinate x. The substitution e−γ p − β = q gives the equation for
A(q, t)

∂A

∂q
(q, t) = G+(e

γ (β + q), x) − x eγ

the solution of which is

A(q, t) = A0(t) +
∫

dq(G+(e
γ (β + q), x) − x eγ ).

The integration constant A0(t), which is a function of the time variables, cannot be determined
from (3.7) solely; we need the right differential of ξ+ with respect to the time variables which
is precisely the zero-curvature form ω+ in (3.5) we have already explicitly computed in some
examples. For such differential we get

dξ+ξ
−1
+ = px dγ + xeγ dβ + dA(e−γ p − β, t) (3.8)

and A0(t) follows from the condition dξ+ξ
−1
+ = ω+ at p = 0. The case r = 2, for instance,

gives the expressions

γ = 1

3
log z′ β = 2yz′′

9(z′)4/3

where we continue with the abbreviated notation t2 = y, t3 = t, z = J3(t). The element ξ+ of
(3.6) is finally determined by

A(p, y, t) = zp3 +
y[9p(z′)4/3 + 2yz′′]p

9(z′)2/3
+

4y3[z′z(3) − (z′′)2]

81(z′)2
.

Analogously, for r = 3 and letting z now denote the arbitrary function z = J4(t4), we arrive
at the expressions

γ = 1

4
log z′ β = 3tz′′

16(z′)5/4

besides the polynomial

A(p, y, t, t4) = zp4 + t (z′)3/4p3 +
(32yz′ + 9t2z′′)p2

32(z′)1/2

+
3p

512(z′)7/4
[64ytz′z′′ + 3t3(−3(z′′)2 + 4z′z(3))]

+
1

2048(z′)3
[256y2(z′)2z′′ + 288yt2z′(z′z(3) − (z′′)2)

+ 27t4(2(z′′)3 − 3z′z′′z(3) + (z′)2z(4))].

Most of our previous discussion remains unchanged when we replace the generating
function (3.1), for the canonical transformation we have been dealing with, by the more
general function

J (P, ρ) =
r+1∑
k=1

Jk(ρ)P k (3.9)

already studied in [12]. With the same notation conventions we have used up to now, we shall
have canonical variables (P,X) defined by the implicit relations

pr+1 =
r+1∑
k=1

J ′
k(ρ)P k X =

r+1∑
k=1

kJk(ρ)P k−1
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which admit a solution given by power series in p. Functions F(L, x) and G(L, x) are now
determined by the equations

Lr+1 =
r+1∑
k=1

J ′
k(ρ(L, x))F (L, x)k G(L, x) =

r+1∑
k=1

kJk(ρ(L, x))F (L, x)k−1

with the same function ρ(L, x) as before. From what we have said, it readily follows that the
positive parts are again polynomials

F+(p, x) = f0 + f1p G+(p, x) =
r∑

k=0

gkp
k (3.10)

which imply the twistor equations (2.8) for φx and φL,

Lr+1 =
r+1∑
k=1

J ′
k(ρ(L, x))[f0 + (L + φx)f1]k (3.11)

r∑
k=0

gk(L + φx)
k =

r+1∑
k=1

kJk(ρ(L, x))[f0 + (L + φx)f1]k−1. (3.12)

We do not try to write the lengthy explicit expressions for the zero-curvature form ω+

induced by the function (3.9) as we did for the particular and simpler case (3.1). In the
present situation (3.9) and for r = 2, all the information needed is encoded in the first
two coefficients of the series expansion for p in negative powers of L according to (2.6),
p = L + φ1,xL

−1 + φ2,xL
−2 + · · ·; note that the function u(x, y, t) = −2φ1,x solves the dKP

equation. We set za = Ja(t) for a = 1, 2, 3 in terms of which we obtain the formulae

φ1,x = 1

9(z′
3)

4/3
[(z′

2)
2 − 3z′

1z
′
3 − x(z′

3)
1/3z′′

3]

− 2y[z′
3z

′′
2 − z′

2z
′′
3]

9(z′
3)

5/3
+

y2[8(z′′
3)

2 − 6z′
3(z3)

(3)]

81(z′
3)

2
(3.13)

and

φ2,x = 1

81(z′
3)

2
[−2(z′

2)
3 − 9x(z′

3)
4/3z′′

2 + 9z′
2[z′

1z
′
3 + x(z′

3)
1/3z′′

3]]

− 2y

81(z′
3)

7/3
[9(z′

3)
2z′′

1 + 5(z′
2)

2z′′
3 − 4x(z′

3)
1/3(z′′

3)
2

− 6z′
3(z

′
2z

′′
2 + z′

1z
′′
3) + 3x(z′

3)
4/3(z3)

(3)] +
y2

27(z′
3)

8/3
[−4z′

2(z
′′
3)

2

− 2(z′
3)

2(z2)
(3) + 2z′

3[2z′′
2z

′′
3 + z′

2(z3)
(3)]]

− 4y3

2187(z′
3)

3
[28(z′′

3)
3 − 36z′

3z
′′
3(z3)

(3) + 9(z′
3)

2(z3)
(4)].

The positive part ξ+ of the solution to the factorization problem in the present case is obtained
from conditions (3.7) for the solutions F+(p, x) and G+(p, x) to equations (3.11) and (3.12).

Proposition 3.1. The group element ξ+ corresponding with the solution of the factorization
problem (2.4) for the canonical transformation associated with the generating function (3.9)
admits a representation in the form

ξ+ = eγpx eβx eA
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where γ and β depend on the time variables t = (t2, . . . , tr+1) while A is a polynomial of
degree r + 1 in p whose coefficients are functions of t.

Note that the solution of the dKP hierarchy ω+ = dξ+ξ
−1
+ is given by a g-valued zero-curvature

form that as in (3.8) is defined in a finite-dimensional subalgebra of the Lie algebra g+. Namely,
the Lie algebra of polynomial functions in (p, x) of the form

h(p, x) = h0(p) + xh1(p)

with coefficients given by polynomials in p, h0(p) of degree r + 1 and h1(p) of degree 1.

4. Symmetries

As we have seen, the generating function (3.9) gives rise to a solution of the dKP hierarchy
that follows from the factorization problem

et (p)k1 = ξ−1
− ξ+ (4.1)

where k1 represents the flow that induces the transformation defined by the function (3.9). Let
k denote a group element for which, by composition with (4.1), we obtain

et (p)k1k = ξ−1
− ξ+k

besides the associated factorization problem for k1k

et (p)k1k = ψ−1
− ψ+. (4.2)

This gives, in fact, a description of the factorization

ξ+k = η−1
− η+ (4.3)

as ψ− = η−ξ− and ψ+ = η+. Thus we see that the zero-curvature form

ω+ = dη+η
−1
+ = dψ+ψ

−1
+ (4.4)

represents a solution of the dKP hierarchy that corresponds precisely to the factorization
problem for the element k1k and gives a solution for the dKP equation u(x, t) in coordinates
x and t = (t2, . . . , tr+1). We shall describe the solution ω+ in (4.4) in terms of the solution to
the dKP hierarchy dξ+ξ

−1
+ , obtained from (4.1), we have considered in the previous section.

Since η+ = η−ξ+k, as follows from (4.3), the positive part of the right differential results in an
expression for ω+ as

ω+ = Adη− dξ+ξ
−1
+

∣∣
+ = dξ+ξ

−1
+ +

{
ln η−, dξ+ξ

−1
+

}
+ + · · · (4.5)

which differs from the usual solutions in the replacement of exp t (p) for ξ+ in the factorization
problem. Due to the special structure of the element ξ+ figuring in proposition (3.1) we shall
see that there exist new coordinates x̃, t̃ in terms of which the factorization problem (4.3)
becomes an ordinary factorization problem for exp t̃ (p̃).

To begin with, let us define new canonical coordinates p̃, x̃ and new time variables t̃ by
means of the Lie algebra automorphism (canonical transformation) induced by the adjoint
action of the given element ξ+,

Adξ+p = Ad et̃ (p̃)p̃ = p̃ (4.6)

Adξ+x = Ad et̃ (p̃)x̃ = x̃ +
∂t̃

∂p̃
. (4.7)

We have thus obtained the formulae

p̃ = F+(p, x) x̃ +
∂t̃

∂p̃
= G+(p, x) (4.8)
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by replacement of (3.10) in (4.6) and (4.7) respectively. The factorization problem (4.3)
generates the equations in the Lie algebra

Adξ+P(p, x) = Ad(η−1
− η+)p

and

Adξ+X(p, x) = Ad(η−1
− η+)x

if (P,X) is obtained from (p, x) acting with k. Since, as follows from (4.6) and (4.7)

Adξ+P(p, x) = Ad et̃ (p̃)P (p̃, x̃)

and the corresponding formula for X(p, x), we see that equation (4.3), when written in the
new tilde coordinates, reads

et̃ (p̃)k̃ = η̃−1
− η̃+.

In this relation, the tilde transformations η̃−, η̃+ are defined by substitution of p, x in terms of
p̃, x̃, according to (4.8), in the elements η−, η+. Note that the transformation (4.8) preserves
the positive and negative subalgebras. The right differential of the last equation produces a
solution of the dKP hierarchy (with solution ũ(x̃, t̃) for the dKP equation) which is given by

ω̃+ = Adη̃− dt̃ (p̃)|+ = dt̃ (p̃) + {ln η̃−, dt̃ (p̃)}+ + · · · . (4.9)

The sought transformation follows by the elimination of η− between formulae (4.5) and (4.9)
which for the solutions u(x, t) and ũ(x̃, t̃) becomes the explicit relation

ũ(x̃, t̃) = ∂p̃

∂p

∂x

∂x̃
[u(x, t) − u0(x, t)] (4.10)

where u0(x, t) denotes the solution of the dKP equation determined by the zero-curvature
form dξ+ξ

−1
+ already studied in the preceding section.

Proposition 4.1. Let k1 define the factorization problem (4.1) and assume that ũ and u are
the solutions to the dKP equation associated with the factorization problems (2.4) defined by
the elements k and k1k respectively. Then, ũ is obtained from u according to formula (4.10).

To write concrete examples we first set r = 2 and keep the notation conventions of
section 3, za = Ja(t) for a = 1, 2, 3. Then, from equations (3.10) and (4.8), we obtain the
transformation for the canonical variables,

p̃ = p

(z′
3)

1/3
− 2yz′′

3

9(z′
3)

4/3
− z′

2

3z′
3

x̃ = x(z′
3)

1/3 +
2y2z′′

3

9(z′
3)

2/3
+

2yz′
2

3(z′
3)

1/3
+ z1. (4.11)

In addition, the time variables transform according to

ỹ = y(z′
3)

2/3 + z2 t̃ = z3

and the new solution to the dKP equation, as given by (4.10), is ũ(x̃, ỹ, t̃ ) =
(z′

3)
−2/3(u(x, y, t) + 2φ1,x), with the function φ1,x defined in formula (3.13). These are

the transformations of [21, 12] up to a permutation of tilde and normal variables. One of
the main achievements of the group theory for the dKP equation consists in the explanation
of these rather involved transformation formulae. Analogous computations for r = 3, with
za = Ja(t4) for a = 1, 2, 3, 4, lead to the following relations,

p̃ = p

(z′
4)

1/4
− 3tz′′

4

16(z′
4)

5/4
− z′

3

4z′
4
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and

x̃ = (z′
4)

1/4x +
9t3[4z′

4(z4)
(3) − 3(z′′

4)
2]

512(z′
4)

7/4
+

9t2[2z′
4z

′′
3 − z′

3z
′′
4]

64(z′
4)

3/2

+
3t

32(z′
4)

5/4
[−(z′

3)
2 + 8z′

2z
′
4 + 4y(z′

4)
1/2z′′

4] +
yz′

3

2(z′
4)

1/2
+ z1

for the pair of canonical coordinates. The new time variables now take the form

ỹ = (z′
4)

1/2y + z2 +
1

32(z′
4)

1/2
[24tz′

3(z
′
4)

1/4 + 9t2z′′
4]

and

t̃ = (z′
4)

3/4t + z3 t̃4 = z4.

Finally, the resulting solution for the dKP equation is

ũ = (z′
4)

−1/2u +
1

256(z′
4)

5/2
[3t2[15(z′′

4)
2 − 12z′

4(z4)
(3)] + 96t[(z′

4)
5/4z′′

3 − z′
3(z

′
4)

1/4z′′
4]

− 64yz′
4z

′′
4 + 48(z′

3)
2(z′

4)
1/2 − 128z′

2(z
′
4)

3/2].

5. Composition of transformations

The canonical transformation defined by the generating function (3.1) represents a particular
case of more general transformations studied in [12]. Let us consider, for instance, the
transformation defined by the generating function

J (P, ρ) = Jr+1(ρ)P
r+1
m

in the notation of section 3, with a fixed integer m � 1. Thus we have a map (p, x)
K→ (P,X)

characterized by the equations

pr+1 = J ′
r+1(ρ)P

r+1
m X = r + 1

m
Jr+1(ρ)P

r+1−m
m .

We observe that this transformation decomposes into simpler constituents. For if we take

m = 1 in the previous formulae, as in (3.1), we shall have (p, x)
K1→ (P1, X1) defined by

pr+1 = J ′
r+1(ρ)P r+1

1 X1 = (r + 1)Jr+1(ρ)P r
1 .

If, in addition, we denote by (p, x)
Km→ (Pm,Xm) the transformation induced by the particular

choice Jr+1(ρ) = ρ = x/(r + 1)pr , keeping fixed the value of m, we readily get

pr+1 = P
r+1
m

m Xm = x

mpr
P

r+1−m
m

m

which represents the well-known transformation [11]

Pm = pm Xm = x

mpm−1
.

We conclude that the composition of the transformations K1 and Km results in K = KmK1,
which amounts to the relations P(p, x) = Pm(P1, X1) and X(p, x) = Xm(P1, X1).

A generalization of the situation just described appears in connection with the generating
function [12]

J (P, ρ) =
r+1∑
k=1

Jk(ρ)P
k
m +

m+n∑
k=r+2

γkP
k
m (5.1)
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where n is a non-negative integer. The associated transformation, we shall denote again by

K , takes the canonical pair (p, x) into the new variables (P,X), (p, x)
K→ (P,X), defined

by the implicit equations

pr+1 =
r+1∑
k=1

J ′
k(ρ)P

k
m X =

r+1∑
k=1

k

m
Jk(ρ)P

k−m
m +

m+n∑
k=r+2

k

m
γkP

k−m
m . (5.2)

The transformation K1, obtained from (5.2) when we set m = 1 and all of the γk = 0, is now

(p, x)
K1→ (P1, X1), with defining equations

pr+1 =
r+1∑
k=1

J ′
k(ρ)P k

1 X1 =
r+1∑
k=1

kJk(ρ)P k−1
1 (5.3)

as in section 3. The definition of Km becomes in the present situation, (p, x)
Km→ (Pm,Xm),

pr+1 = P
r+1
m

m Xm = x

mpr
P

r+1−m
m

m +
m+n∑

k=r+2

k

m
γkP

k−m
m (5.4)

which admits the explicit solution given by the formulae

Pm = pm Xm = x

mpm−1
+

m+n∑
k=r+2

k

m
γkp

k−m. (5.5)

Proposition 5.1. The transformation (5.2) is the result of the composition of (5.5) with (5.3),
that is K = KmK1.

Proof 5.1. The composition gives Pm = P m
1 which implies the first of equations (5.2) as a

consequence of the defining relation for P1 in (5.3). Analogously, for Xm we have

Xm = X1

mP m−1
1

+
m+n∑

k=r+2

k

m
γkP

k−m
1

which in terms of Pm reads

Xm =
r+1∑
k=1

k

m
Jk(ρ)P

k−m
m

m +
m+n∑

k=r+2

k

m
γkP

k−m
m

m .

Therefore, the pair (Pm,Xm) is a solution for the system (5.2). �

Conjugation with constant elements in the group preserves the solutions to the factorization
problem. According to proposition (4.1), left and right composition with K1, which are
induced by left and right translations by k1 respectively, are then symmetries for the dKP
hierarchy. Therefore, solutions of the dKP hierarchy obtained from the twistor equations
through the canonical transformation (5.2) reduce, by proposition (5.1), to solutions determined
by formulae (5.5). These are a particular instance of transformations of the following type,

P = P(p) X = x

P ′(p)
+ γ (p) (5.6)

where P(p) and γ (p) are arbitrary functions which do not depend on x. The solutions
furnished by the twistor equations for this type of transformations are easily described upon
further specialization of the function P(p). The class of transformations (5.6) defined by
functions of the form

P(p) = pm eA−(p) (5.7)
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for an integer m � 2 and a function A−(p) strictly negative in powers of the variable p,
gives rise to a corresponding collection of dKP solutions characterized by a finite number of
conditions. In the present context we shall not assume any restriction about the number of
time variables figuring in the formulae under consideration. Because P(p) does not depend on
x, the first of the twistor equations (2.7) is identically satisfied provided L(p, x) is implicitly
defined through the relation

Lm eA−(L) = pm + w1p
m−1 + · · · + wm−1p + wm (5.8)

where the coefficients wk are functions of x and t with w1 being constant. This fixes �x and
must be completed with the compatibility conditions that follow from the second of the twistor
equations (2.7). According to proposition 2.1 this amounts to the vanishing of the first m − 1
coefficients of G−(p, x) and for a prescribed generating function �(L, x) as in (2.6) results
in the set of equations∫ [

t ′(L) + x

P ′(L)
+ γ (L)

]
pk−1 dp = 0 k = 1, 2, . . . , m − 1 (5.9)

for a closed path around the origin. In these equations L(p, x) is given in terms of p as defined
by equation (5.8). Solving (5.8) for p we can express relations (5.9) in the form∫ [

t ′′(L)P ′(L) − (t ′(L) + x)P ′′(L)

P ′(L)2
+ γ ′(L)

]
p(L, x)k dL = 0 (5.10)

for k = 1, 2, . . . , m − 1. With this representation the influence of (5.8) reduces to the
substitution in the integral of the first m−1 powers of p(L, x) instead of the longer computation
needed for (5.9). Greater simplification is gained with the restriction in the number of the
time variables. It is not hard to see that if t (L) is a polynomial in L instead of a series with
an infinite number of positive powers of L, and in the function γ (p) the number of positive
powers of p is finite, relations (5.10) define the solution by a system of algebraic equations.
An example of this situation is the transformation

P(p) = p4

(
1 +

ν

5p5

)
X(p, x) = x

P ′(p)

where ν is a parameter; we set the time variables by means of the function

t (p) = yp2 + tp3 +
1

10
sp10

in order to appreciate the influence of higher times in the solution of the dKP equation. System
(5.10) consists in three equations that can be reduced to the pair of conditions

256s

27
v4 + (64x + 96tu − 6νsu2)v +

sν2

2
u − 12νt = 0

−256s2

9
uv4 +

32νs2

9
v3 +

256sy

3
v2 +

ν2s2

4
u2 − 12νstu + 144t2 = 0

with u = −2φ1,x and v = 3φ2,x , which furnish the desired solutions u of the dKP equation.
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[12] Guil F, Mañas M and Martinez Alonso L 2003 J. Phys. A: Math. Gen. 36 6457
[13] Kodama Y 1988 Phys. Lett. A 129 223

Kodama Y 1988 Prog. Theor. Phys. Suppl. 95 184
[14] Kodama Y and Gibbons J 1989 Phys. Lett. A 135 167
[15] Geogdzhaev V V 1985 Sov. Phys.—Dokl. 30 840

Geogdzhaev V V 1987 Physica D 87 168
[16] Kodama Y 1990 Phys. Lett. A 147 477
[17] Konopelchenko B and Martinez Alonso L 2001 Phys. Lett. A 286 161
[18] Konopelchenko B, Martinez Alonso L and Ragnisco O 2001 J. Phys. A: Math. Gen. 34 10209
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